Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Phase 6: Production Readiness

Status: Not Started Duration: 8-10 weeks Team Size: 4-5 engineers (1 SRE, 1 ML engineer, 1 Python, 1 Rust, 1 DevOps) Prerequisites: Phase 5 complete (security hardening) Start Date: TBD Target Completion: TBD


Overview

Phase 6 prepares OctoLLM for production deployment at scale with autoscaling, cost optimization, compliance implementation, advanced performance tuning, and multi-tenancy support.

Key Deliverables:

  1. Autoscaling - HorizontalPodAutoscaler with custom metrics, VPA, cluster autoscaling
  2. Cost Optimization - Right-sizing, spot instances, reserved capacity, LLM cost reduction
  3. Compliance - SOC 2 Type II, ISO 27001, GDPR, CCPA, HIPAA readiness
  4. Advanced Performance - Rust rewrites, model fine-tuning, advanced caching, speculative execution
  5. Multi-Tenancy - Tenant isolation, authentication, data isolation, usage-based billing

Success Criteria:

  • ✅ Autoscaling handles 10x traffic spikes without degradation
  • ✅ Cost per task reduced by 50% vs Phase 5
  • ✅ SOC 2 Type II audit passed
  • ✅ P99 latency <10s for critical tasks (vs <30s in Phase 1)
  • ✅ Multi-tenant isolation tested and verified
  • ✅ Production SLA: 99.9% uptime, <15s P95 latency
  • ✅ Zero customer-impacting security incidents in first 90 days

Reference: docs/doc_phases/PHASE-6-COMPLETE-SPECIFICATIONS.md (14,000+ lines)


Sprint 6.1: Autoscaling [Week 33-34]

Duration: 2 weeks Team: 2 engineers (1 SRE, 1 DevOps) Prerequisites: Phase 3 complete (Kubernetes deployment) Priority: HIGH

Sprint Goals

  • Implement HorizontalPodAutoscaler (HPA) for all services
  • Configure VerticalPodAutoscaler (VPA) for right-sizing
  • Set up cluster autoscaling for node pools
  • Create custom metrics for LLM workload scaling
  • Test autoscaling under load
  • Document scaling policies and runbooks

Architecture Decisions

Scaling Strategy: Hybrid approach (HPA for replicas, VPA for resource requests, cluster autoscaler for nodes) Metrics: CPU, memory, custom (queue depth, task latency, LLM token rate) Target Utilization: 70% CPU/memory (allows headroom for spikes) Scale-Up Policy: Aggressive (30s stabilization) Scale-Down Policy: Conservative (5 minutes stabilization to prevent flapping) Min/Max Replicas: Service-dependent (orchestrator: 3-20, arms: 2-10)

Tasks

HorizontalPodAutoscaler Setup (10 hours)

  • Install Metrics Server (1 hour)

    • Deploy metrics-server in kube-system namespace
    • Verify metric collection
    • Code example:
      # Install metrics-server
      kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
      
      # Verify metrics available
      kubectl top nodes
      kubectl top pods -n octollm
      
    • Files to create: k8s/monitoring/metrics-server.yaml
  • Create HPA for Orchestrator (2 hours)

    • Scale based on CPU and custom metrics (task queue depth)
    • Aggressive scale-up, conservative scale-down
    • Code example:
      # k8s/autoscaling/orchestrator-hpa.yaml
      apiVersion: autoscaling/v2
      kind: HorizontalPodAutoscaler
      metadata:
        name: orchestrator-hpa
        namespace: octollm
      spec:
        scaleTargetRef:
          apiVersion: apps/v1
          kind: Deployment
          name: orchestrator
        minReplicas: 3
        maxReplicas: 20
        metrics:
        # CPU-based scaling
        - type: Resource
          resource:
            name: cpu
            target:
              type: Utilization
              averageUtilization: 70
      
        # Memory-based scaling
        - type: Resource
          resource:
            name: memory
            target:
              type: Utilization
              averageUtilization: 75
      
        # Custom metric: task queue depth
        - type: Pods
          pods:
            metric:
              name: task_queue_depth
            target:
              type: AverageValue
              averageValue: "10"  # Scale up if >10 tasks per pod
      
        behavior:
          scaleUp:
            stabilizationWindowSeconds: 30
            policies:
            - type: Percent
              value: 100  # Double replicas
              periodSeconds: 30
            - type: Pods
              value: 4  # Or add 4 pods
              periodSeconds: 30
            selectPolicy: Max  # Choose most aggressive
      
          scaleDown:
            stabilizationWindowSeconds: 300  # 5 minutes
            policies:
            - type: Percent
              value: 50  # Remove 50% of pods
              periodSeconds: 60
            - type: Pods
              value: 2  # Or remove 2 pods
              periodSeconds: 60
            selectPolicy: Min  # Choose most conservative
      
    • Files to create: k8s/autoscaling/orchestrator-hpa.yaml
  • Create HPAs for All Arms (4 hours)

    • Planner Arm: Scale on CPU + task decomposition requests
    • Executor Arm: Scale on CPU + active executions
    • Coder Arm: Scale on CPU + code generation requests
    • Judge Arm: Scale on CPU + validation requests
    • Safety Guardian Arm: Scale on CPU + PII detection requests
    • Retriever Arm: Scale on CPU + search requests
    • Code example (Executor Arm):
      # k8s/autoscaling/executor-arm-hpa.yaml
      apiVersion: autoscaling/v2
      kind: HorizontalPodAutoscaler
      metadata:
        name: executor-arm-hpa
        namespace: octollm
      spec:
        scaleTargetRef:
          apiVersion: apps/v1
          kind: Deployment
          name: executor-arm
        minReplicas: 2
        maxReplicas: 10
        metrics:
        - type: Resource
          resource:
            name: cpu
            target:
              type: Utilization
              averageUtilization: 70
      
        - type: Pods
          pods:
            metric:
              name: active_executions
            target:
              type: AverageValue
              averageValue: "3"  # Max 3 concurrent executions per pod
      
        behavior:
          scaleUp:
            stabilizationWindowSeconds: 30
            policies:
            - type: Percent
              value: 100
              periodSeconds: 30
          scaleDown:
            stabilizationWindowSeconds: 300
            policies:
            - type: Pods
              value: 1
              periodSeconds: 60
      
    • Files to create: k8s/autoscaling/executor-arm-hpa.yaml, similar for other arms
  • Implement Custom Metrics Exporter (3 hours)

    • Expose application metrics for HPA (task queue depth, active executions)

    • Use Prometheus adapter

    • Code example:

      # orchestrator/metrics/custom_metrics.py
      from prometheus_client import Gauge
      from typing import Dict, Any
      
      # Define custom metrics for autoscaling
      task_queue_depth_gauge = Gauge(
          'task_queue_depth',
          'Number of tasks waiting in queue per pod',
          ['pod_name']
      )
      
      active_tasks_gauge = Gauge(
          'active_tasks',
          'Number of tasks currently being processed',
          ['pod_name']
      )
      
      class CustomMetricsExporter:
          """Export custom metrics for HPA."""
      
          def __init__(self, pod_name: str):
              self.pod_name = pod_name
      
          def update_queue_depth(self, depth: int):
              """Update task queue depth metric."""
              task_queue_depth_gauge.labels(pod_name=self.pod_name).set(depth)
      
          def update_active_tasks(self, count: int):
              """Update active task count metric."""
              active_tasks_gauge.labels(pod_name=self.pod_name).set(count)
      
      # k8s/monitoring/prometheus-adapter-config.yaml
      apiVersion: v1
      kind: ConfigMap
      metadata:
        name: prometheus-adapter-config
        namespace: monitoring
      data:
        config.yaml: |
          rules:
          - seriesQuery: 'task_queue_depth{namespace="octollm"}'
            resources:
              overrides:
                namespace: {resource: "namespace"}
                pod_name: {resource: "pod"}
            name:
              matches: "^(.*)$"
              as: "task_queue_depth"
            metricsQuery: 'avg_over_time(task_queue_depth{<<.LabelMatchers>>}[1m])'
      
          - seriesQuery: 'active_executions{namespace="octollm"}'
            resources:
              overrides:
                namespace: {resource: "namespace"}
                pod_name: {resource: "pod"}
            name:
              matches: "^(.*)$"
              as: "active_executions"
            metricsQuery: 'avg_over_time(active_executions{<<.LabelMatchers>>}[1m])'
      
    • Files to create: orchestrator/metrics/custom_metrics.py, k8s/monitoring/prometheus-adapter-config.yaml

VerticalPodAutoscaler Setup (4 hours)

  • Install VPA (1 hour)

    • Deploy VPA components (recommender, updater, admission controller)
    • Code example:
      # Install VPA
      git clone https://github.com/kubernetes/autoscaler.git
      cd autoscaler/vertical-pod-autoscaler
      ./hack/vpa-up.sh
      
    • Files to create: k8s/autoscaling/vpa-install.sh
  • Create VPA Policies (2 hours)

    • Recommendation-only mode for initial analysis
    • Auto mode for non-critical services
    • Code example:
      # k8s/autoscaling/orchestrator-vpa.yaml
      apiVersion: autoscaling.k8s.io/v1
      kind: VerticalPodAutoscaler
      metadata:
        name: orchestrator-vpa
        namespace: octollm
      spec:
        targetRef:
          apiVersion: apps/v1
          kind: Deployment
          name: orchestrator
        updatePolicy:
          updateMode: "Auto"  # Auto, Recreate, Initial, or Off
        resourcePolicy:
          containerPolicies:
          - containerName: orchestrator
            minAllowed:
              cpu: 500m
              memory: 1Gi
            maxAllowed:
              cpu: 8000m
              memory: 16Gi
            controlledResources:
            - cpu
            - memory
      
    • Files to create: k8s/autoscaling/orchestrator-vpa.yaml
  • Monitor VPA Recommendations (1 hour)

    • Analyze recommendations for all services
    • Adjust resource requests based on data
    • Code example:
      # scripts/analyze_vpa_recommendations.sh
      #!/bin/bash
      set -e
      
      echo "=== VPA Recommendations Analysis ==="
      
      for deployment in orchestrator planner-arm executor-arm coder-arm judge-arm safety-guardian-arm retriever-arm; do
          echo "\n--- $deployment ---"
      
          # Get VPA recommendations
          kubectl get vpa ${deployment}-vpa -n octollm -o json | \
              jq -r '.status.recommendation.containerRecommendations[] |
                     "Container: \(.containerName)\n  Current CPU: \(.target.cpu)\n  Recommended CPU: \(.upperBound.cpu)\n  Current Memory: \(.target.memory)\n  Recommended Memory: \(.upperBound.memory)"'
      done
      
    • Files to create: scripts/analyze_vpa_recommendations.sh

Cluster Autoscaler Setup (4 hours)

  • Configure Cluster Autoscaler (2 hours)

    • Set up node pools with min/max sizes
    • Configure autoscaler for each cloud provider
    • Code example (GKE):
      # k8s/autoscaling/cluster-autoscaler-gke.yaml
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: cluster-autoscaler
        namespace: kube-system
      spec:
        replicas: 1
        template:
          spec:
            serviceAccountName: cluster-autoscaler
            containers:
            - image: k8s.gcr.io/autoscaling/cluster-autoscaler:v1.28.0
              name: cluster-autoscaler
              command:
              - ./cluster-autoscaler
              - --v=4
              - --stderrthreshold=info
              - --cloud-provider=gce
              - --skip-nodes-with-local-storage=false
              - --expander=least-waste
              - --node-group-auto-discovery=mig:namePrefix=octollm-node-pool
              - --balance-similar-node-groups
              - --skip-nodes-with-system-pods=false
              - --scale-down-delay-after-add=5m
              - --scale-down-unneeded-time=5m
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: cluster-autoscaler
      rules:
      - apiGroups: [""]
        resources: ["events", "endpoints"]
        verbs: ["create", "patch"]
      - apiGroups: [""]
        resources: ["pods/eviction"]
        verbs: ["create"]
      - apiGroups: [""]
        resources: ["pods/status"]
        verbs: ["update"]
      - apiGroups: [""]
        resources: ["endpoints"]
        resourceNames: ["cluster-autoscaler"]
        verbs: ["get", "update"]
      - apiGroups: [""]
        resources: ["nodes"]
        verbs: ["watch", "list", "get", "update"]
      - apiGroups: [""]
        resources: ["pods", "services", "replicationcontrollers", "persistentvolumeclaims", "persistentvolumes"]
        verbs: ["watch", "list", "get"]
      - apiGroups: ["extensions"]
        resources: ["replicasets", "daemonsets"]
        verbs: ["watch", "list", "get"]
      - apiGroups: ["policy"]
        resources: ["poddisruptionbudgets"]
        verbs: ["watch", "list"]
      - apiGroups: ["apps"]
        resources: ["statefulsets", "replicasets", "daemonsets"]
        verbs: ["watch", "list", "get"]
      - apiGroups: ["storage.k8s.io"]
        resources: ["storageclasses", "csinodes", "csidrivers", "csistoragecapacities"]
        verbs: ["watch", "list", "get"]
      - apiGroups: ["batch", "extensions"]
        resources: ["jobs"]
        verbs: ["get", "list", "watch", "patch"]
      - apiGroups: ["coordination.k8s.io"]
        resources: ["leases"]
        verbs: ["create"]
      - apiGroups: ["coordination.k8s.io"]
        resourceNames: ["cluster-autoscaler"]
        resources: ["leases"]
        verbs: ["get", "update"]
      
    • Files to create: k8s/autoscaling/cluster-autoscaler-gke.yaml
  • Create Node Pools with Labels (1 hour)

    • Separate pools for CPU-intensive and memory-intensive workloads
    • Use node affinity to schedule arms appropriately
    • Code example:
      # terraform/gke-node-pools.tf
      resource "google_container_node_pool" "cpu_optimized" {
        name       = "cpu-optimized-pool"
        cluster    = google_container_cluster.octollm.name
        node_count = 2
      
        autoscaling {
          min_node_count = 2
          max_node_count = 20
        }
      
        node_config {
          machine_type = "n2-highcpu-16"  # 16 vCPU, 16 GB RAM
      
          labels = {
            workload-type = "cpu-optimized"
          }
      
          taint {
            key    = "workload-type"
            value  = "cpu-optimized"
            effect = "NO_SCHEDULE"
          }
        }
      }
      
      resource "google_container_node_pool" "memory_optimized" {
        name       = "memory-optimized-pool"
        cluster    = google_container_cluster.octollm.name
        node_count = 2
      
        autoscaling {
          min_node_count = 2
          max_node_count = 10
        }
      
        node_config {
          machine_type = "n2-highmem-8"  # 8 vCPU, 64 GB RAM
      
          labels = {
            workload-type = "memory-optimized"
          }
      
          taint {
            key    = "workload-type"
            value  = "memory-optimized"
            effect = "NO_SCHEDULE"
          }
        }
      }
      
    • Files to create: terraform/gke-node-pools.tf
  • Test Cluster Autoscaling (1 hour)

    • Simulate load spike
    • Verify nodes added automatically
    • Verify nodes removed after scale-down
    • Files to create: scripts/test_cluster_autoscaling.sh

Load Testing (4 hours)

  • Create Load Test Suite (2 hours)

    • Use k6 or Locust for load generation
    • Simulate realistic traffic patterns
    • Code example:
      // tests/load/autoscaling_test.js
      import http from 'k6/http';
      import { check, sleep } from 'k6';
      import { Rate } from 'k6/metrics';
      
      const failureRate = new Rate('failed_requests');
      
      export let options = {
        stages: [
          { duration: '2m', target: 10 },   // Ramp up to 10 users
          { duration: '5m', target: 10 },   // Steady state
          { duration: '2m', target: 50 },   // Spike to 50 users
          { duration: '5m', target: 50 },   // Hold spike
          { duration: '2m', target: 100 },  // Extreme spike
          { duration: '5m', target: 100 },  // Hold extreme spike
          { duration: '5m', target: 0 },    // Ramp down
        ],
        thresholds: {
          'failed_requests': ['rate<0.01'],  // <1% failure rate
          'http_req_duration': ['p(95)<15000'],  // P95 latency <15s
        },
      };
      
      const BASE_URL = 'http://octollm-gateway.octollm.svc.cluster.local';
      
      export default function () {
        // Submit a task
        const payload = JSON.stringify({
          goal: 'Analyze this code for security vulnerabilities',
          constraints: {
            max_cost_tokens: 10000,
            max_time_seconds: 300
          },
          context: {
            code: 'def login(username, password):\n    query = f"SELECT * FROM users WHERE username=\'{username}\' AND password=\'{password}\'"'
          }
        });
      
        const params = {
          headers: {
            'Content-Type': 'application/json',
            'Authorization': 'Bearer test-token-123'
          },
        };
      
        const response = http.post(`${BASE_URL}/tasks`, payload, params);
      
        check(response, {
          'status is 201': (r) => r.status === 201,
          'has task_id': (r) => r.json('task_id') !== undefined,
        }) || failureRate.add(1);
      
        sleep(1);
      }
      
    • Files to create: tests/load/autoscaling_test.js
  • Run Load Tests (2 hours)

    • Execute load tests against staging environment
    • Monitor autoscaling behavior
    • Verify SLA compliance (99.9% uptime, <15s P95 latency)
    • Generate load test report
    • Code example:
      # scripts/run_load_test.sh
      #!/bin/bash
      set -e
      
      echo "Starting autoscaling load test..."
      
      # Run k6 load test
      k6 run --out json=load_test_results.json tests/load/autoscaling_test.js
      
      # Analyze results
      python scripts/analyze_load_test.py load_test_results.json
      
      # Check HPA events
      echo "\n=== HPA Events ==="
      kubectl get events -n octollm --field-selector involvedObject.kind=HorizontalPodAutoscaler
      
      # Check pod scaling timeline
      echo "\n=== Pod Count Timeline ==="
      kubectl get pods -n octollm -l app=orchestrator --watch
      
      echo "Load test complete. Review load_test_results.json for detailed metrics."
      
    • Files to create: scripts/run_load_test.sh, scripts/analyze_load_test.py

Testing Requirements

Unit Tests

  • HPA configuration validation (5 test cases)
  • VPA policy validation (5 test cases)
  • Custom metrics exporter (10 test cases)

Integration Tests

  • HPA scaling behavior (scale up, scale down, flapping prevention)
  • VPA resource adjustment
  • Cluster autoscaler node provisioning
  • End-to-end autoscaling under load

Performance Tests

  • Load test: 10x traffic spike (verify autoscaling handles without degradation)
  • Stress test: 100x traffic spike (verify graceful degradation)
  • Soak test: 24-hour sustained load (verify no memory leaks or resource drift)

Documentation Deliverables

  • Autoscaling architecture diagram
  • HPA configuration guide
  • VPA tuning guide
  • Cluster autoscaler runbook
  • Load testing procedures
  • Troubleshooting guide (scaling issues)

Success Criteria

  • HPA scales services within 60 seconds of load increase
  • VPA recommendations reduce resource waste by >30%
  • Cluster autoscaler provisions nodes within 5 minutes
  • Load test passes with <1% failure rate and P95 latency <15s
  • Cost per task unchanged despite autoscaling overhead

Common Pitfalls

  1. HPA Flapping: Too aggressive scale-down causes constant scaling up/down—use longer stabilization windows
  2. VPA Disruption: Auto mode restarts pods—use recommendation mode for critical services
  3. Node Affinity Conflicts: Pods can't schedule if no matching nodes—ensure default node pool
  4. Custom Metrics Lag: Prometheus scrape interval causes scaling delays—reduce to 15s for autoscaling metrics
  5. Resource Limits: HPA can't scale if pods hit resource limits—ensure limits > requests

Estimated Effort

  • Development: 22 hours
  • Testing: 6 hours
  • Documentation: 3 hours
  • Total: 31 hours (~2 weeks for 2 engineers)

Dependencies

  • Prerequisites: Phase 3 complete (Kubernetes deployment, monitoring stack)
  • Blocking: None
  • Blocked By: None

Sprint 6.2: Cost Optimization [Week 35-36]

Duration: 2 weeks Team: 3 engineers (1 SRE, 1 ML engineer, 1 Python) Prerequisites: Sprint 6.1 complete (autoscaling) Priority: HIGH

Sprint Goals

  • Right-size all services based on actual usage
  • Implement spot/preemptible instances for non-critical workloads
  • Purchase reserved capacity for baseline load
  • Optimize LLM costs (prompt caching, smaller models, fine-tuning)
  • Implement request batching and deduplication
  • Reduce cost per task by 50% vs Phase 5

Architecture Decisions

Compute: Mix of on-demand (20%), spot instances (60%), reserved capacity (20%) LLM Strategy: Use cheapest model per task type (GPT-3.5 for simple, GPT-4 for complex) Caching: Aggressive prompt caching with semantic similarity matching Batching: Batch similar requests to reduce LLM API overhead Fine-Tuning: Fine-tune smaller models (Mistral 7B) to replace GPT-3.5 for common patterns

Tasks

Right-Sizing (8 hours)

  • Analyze Resource Usage (3 hours)

    • Use VPA recommendations and Prometheus metrics
    • Identify over-provisioned services
    • Code example:
      # scripts/analyze_resource_usage.py
      import requests
      from datetime import datetime, timedelta
      from typing import Dict, List, Any
      
      class ResourceAnalyzer:
          """Analyze resource usage and identify optimization opportunities."""
      
          def __init__(self, prometheus_url: str):
              self.prometheus_url = prometheus_url
      
          def analyze_service(
              self,
              service_name: str,
              days_lookback: int = 30
          ) -> Dict[str, Any]:
              """Analyze resource usage for a service."""
      
              end_time = datetime.now()
              start_time = end_time - timedelta(days=days_lookback)
      
              # Query CPU usage
              cpu_query = f'''
                  avg_over_time(
                      rate(container_cpu_usage_seconds_total{{
                          namespace="octollm",
                          pod=~"{service_name}-.*"
                      }}[5m])[{days_lookback}d:5m]
                  )
              '''
      
              cpu_usage = self._query_prometheus(cpu_query)
      
              # Query memory usage
              memory_query = f'''
                  avg_over_time(
                      container_memory_working_set_bytes{{
                          namespace="octollm",
                          pod=~"{service_name}-.*"
                      }}[{days_lookback}d:5m]
                  )
              '''
      
              memory_usage = self._query_prometheus(memory_query)
      
              # Get current resource requests
              current_requests = self._get_current_requests(service_name)
      
              # Calculate waste
              cpu_waste_percent = (
                  (current_requests['cpu'] - cpu_usage['p95']) /
                  current_requests['cpu'] * 100
              )
      
              memory_waste_percent = (
                  (current_requests['memory'] - memory_usage['p95']) /
                  current_requests['memory'] * 100
              )
      
              return {
                  'service': service_name,
                  'current_cpu_request': current_requests['cpu'],
                  'p95_cpu_usage': cpu_usage['p95'],
                  'cpu_waste_percent': cpu_waste_percent,
                  'current_memory_request': current_requests['memory'],
                  'p95_memory_usage': memory_usage['p95'],
                  'memory_waste_percent': memory_waste_percent,
                  'recommendation': self._generate_recommendation(
                      current_requests,
                      cpu_usage,
                      memory_usage
                  )
              }
      
          def _query_prometheus(self, query: str) -> Dict[str, float]:
              """Query Prometheus and return percentile statistics."""
              # Implementation: Call Prometheus API, calculate percentiles
              pass
      
          def _get_current_requests(self, service_name: str) -> Dict[str, float]:
              """Get current resource requests from Kubernetes."""
              # Implementation: Call Kubernetes API
              pass
      
          def _generate_recommendation(
              self,
              current: Dict[str, float],
              cpu_usage: Dict[str, float],
              memory_usage: Dict[str, float]
          ) -> str:
              """Generate right-sizing recommendation."""
      
              # Add 20% buffer to P95 usage for headroom
              recommended_cpu = cpu_usage['p95'] * 1.2
              recommended_memory = memory_usage['p95'] * 1.2
      
              if recommended_cpu < current['cpu'] * 0.8:
                  return f"Reduce CPU request to {recommended_cpu:.2f} cores"
              elif recommended_cpu > current['cpu'] * 1.2:
                  return f"Increase CPU request to {recommended_cpu:.2f} cores"
      
              if recommended_memory < current['memory'] * 0.8:
                  return f"Reduce memory request to {recommended_memory / 1e9:.2f} GB"
              elif recommended_memory > current['memory'] * 1.2:
                  return f"Increase memory request to {recommended_memory / 1e9:.2f} GB"
      
              return "Current sizing is appropriate"
      
    • Files to create: scripts/analyze_resource_usage.py
  • Apply Right-Sizing (2 hours)

    • Update resource requests/limits for all services
    • Deploy changes incrementally
    • Monitor for performance regressions
    • Files to update: All deployment YAML files
  • Calculate Cost Savings (1 hour)

    • Compare costs before/after right-sizing
    • Generate cost savings report
    • Files to create: docs/cost-optimization/right-sizing-report.md
  • Set Up Cost Monitoring Dashboard (2 hours)

    • Grafana dashboard for cost tracking
    • Alert on cost anomalies
    • Code example:
      {
        "dashboard": {
          "title": "OctoLLM Cost Monitoring",
          "panels": [
            {
              "title": "Total Monthly Cost",
              "type": "graph",
              "targets": [
                {
                  "expr": "sum(kube_pod_container_resource_requests{namespace='octollm'} * on(node) group_left() node_cost_hourly) * 730"
                }
              ]
            },
            {
              "title": "Cost by Service",
              "type": "piechart",
              "targets": [
                {
                  "expr": "sum by (pod) (kube_pod_container_resource_requests{namespace='octollm'} * on(node) group_left() node_cost_hourly) * 730"
                }
              ]
            },
            {
              "title": "LLM API Costs",
              "type": "graph",
              "targets": [
                {
                  "expr": "sum(llm_cost_usd_total)"
                }
              ]
            }
          ]
        }
      }
      
    • Files to create: k8s/monitoring/grafana-dashboards/cost-monitoring.json

Spot Instances (6 hours)

  • Create Spot Instance Node Pool (2 hours)

    • Configure with appropriate labels and taints
    • Set up fallback to on-demand if spot unavailable
    • Code example:
      # terraform/gke-spot-node-pool.tf
      resource "google_container_node_pool" "spot_pool" {
        name       = "spot-pool"
        cluster    = google_container_cluster.octollm.name
        node_count = 5
      
        autoscaling {
          min_node_count = 3
          max_node_count = 50
        }
      
        node_config {
          machine_type = "n2-standard-8"
          spot         = true  # Preemptible/spot instance
      
          labels = {
            workload-type = "spot"
          }
      
          taint {
            key    = "workload-type"
            value  = "spot"
            effect = "NO_SCHEDULE"
          }
      
          metadata = {
            disable-legacy-endpoints = "true"
          }
        }
      }
      
    • Files to create: terraform/gke-spot-node-pool.tf
  • Configure Services for Spot Tolerance (3 hours)

    • Add node affinity to prefer spot instances
    • Implement graceful shutdown for preemption
    • Add PodDisruptionBudgets to ensure availability
    • Code example:
      # k8s/arms/executor-deployment.yaml (updated for spot)
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: executor-arm
        namespace: octollm
      spec:
        replicas: 5
        template:
          spec:
            # Prefer spot instances, fallback to on-demand
            affinity:
              nodeAffinity:
                preferredDuringSchedulingIgnoredDuringExecution:
                - weight: 100
                  preference:
                    matchExpressions:
                    - key: workload-type
                      operator: In
                      values:
                      - spot
      
            tolerations:
            - key: workload-type
              operator: Equal
              value: spot
              effect: NoSchedule
      
            # Graceful shutdown for preemption
            terminationGracePeriodSeconds: 60
      
            containers:
            - name: executor-arm
              lifecycle:
                preStop:
                  exec:
                    command: ["/bin/sh", "-c", "sleep 30"]  # Drain connections
      ---
      apiVersion: policy/v1
      kind: PodDisruptionBudget
      metadata:
        name: executor-arm-pdb
        namespace: octollm
      spec:
        minAvailable: 2  # Ensure at least 2 replicas always available
        selector:
          matchLabels:
            app: executor-arm
      
    • Files to update: All arm deployment YAML files
  • Test Spot Instance Preemption (1 hour)

    • Simulate preemption events
    • Verify graceful failover
    • Files to create: scripts/test_spot_preemption.sh

LLM Cost Optimization (10 hours)

  • Implement Prompt Caching (4 hours)

    • Cache LLM responses with semantic similarity matching
    • Use vector embeddings to find similar prompts
    • Code example:
      # orchestrator/llm/cached_client.py
      from openai import AsyncOpenAI
      from qdrant_client import QdrantClient
      from sentence_transformers import SentenceTransformer
      from typing import Dict, Any, Optional, List
      import hashlib
      import json
      
      class CachedLLMClient:
          """LLM client with semantic caching."""
      
          def __init__(
              self,
              openai_client: AsyncOpenAI,
              qdrant_client: QdrantClient,
              embedding_model: SentenceTransformer,
              similarity_threshold: float = 0.95,
              collection_name: str = "llm_cache"
          ):
              self.openai = openai_client
              self.qdrant = qdrant_client
              self.embedding_model = embedding_model
              self.similarity_threshold = similarity_threshold
              self.collection_name = collection_name
      
              # Create collection if not exists
              self._init_collection()
      
          def _init_collection(self):
              """Initialize Qdrant collection for cache."""
              from qdrant_client.models import Distance, VectorParams
      
              try:
                  self.qdrant.create_collection(
                      collection_name=self.collection_name,
                      vectors_config=VectorParams(
                          size=384,  # all-MiniLM-L6-v2 embedding size
                          distance=Distance.COSINE
                      )
                  )
              except Exception:
                  pass  # Collection already exists
      
          async def chat_completion(
              self,
              messages: List[Dict[str, str]],
              model: str = "gpt-4-turbo-preview",
              temperature: float = 0.0,
              **kwargs
          ) -> Dict[str, Any]:
              """Create chat completion with semantic caching."""
      
              # Create cache key from messages
              prompt = self._messages_to_text(messages)
              cache_key = self._create_cache_key(prompt, model, temperature)
      
              # Check exact match cache first (fast)
              exact_match = await self._check_exact_cache(cache_key)
              if exact_match:
                  return exact_match
      
              # Check semantic similarity cache (slower)
              if temperature == 0.0:  # Only use semantic cache for deterministic requests
                  semantic_match = await self._check_semantic_cache(prompt, model)
                  if semantic_match:
                      return semantic_match
      
              # Cache miss - call LLM
              response = await self.openai.chat.completions.create(
                  messages=messages,
                  model=model,
                  temperature=temperature,
                  **kwargs
              )
      
              # Store in cache
              await self._store_in_cache(cache_key, prompt, model, response)
      
              return response.model_dump()
      
          def _messages_to_text(self, messages: List[Dict[str, str]]) -> str:
              """Convert messages to single text for embedding."""
              return "\n".join(f"{m['role']}: {m['content']}" for m in messages)
      
          def _create_cache_key(
              self,
              prompt: str,
              model: str,
              temperature: float
          ) -> str:
              """Create deterministic cache key."""
              key_input = f"{prompt}|{model}|{temperature}"
              return hashlib.sha256(key_input.encode()).hexdigest()
      
          async def _check_exact_cache(self, cache_key: str) -> Optional[Dict[str, Any]]:
              """Check Redis for exact cache hit."""
              # Implementation: Query Redis
              pass
      
          async def _check_semantic_cache(
              self,
              prompt: str,
              model: str
          ) -> Optional[Dict[str, Any]]:
              """Check Qdrant for semantically similar cached responses."""
      
              # Generate embedding
              embedding = self.embedding_model.encode(prompt).tolist()
      
              # Search for similar prompts
              results = self.qdrant.search(
                  collection_name=self.collection_name,
                  query_vector=embedding,
                  limit=1,
                  score_threshold=self.similarity_threshold,
                  query_filter={
                      "must": [
                          {"key": "model", "match": {"value": model}}
                      ]
                  }
              )
      
              if results and results[0].score >= self.similarity_threshold:
                  # Cache hit
                  cached_response = results[0].payload["response"]
                  return json.loads(cached_response)
      
              return None
      
          async def _store_in_cache(
              self,
              cache_key: str,
              prompt: str,
              model: str,
              response: Any
          ):
              """Store response in both exact and semantic caches."""
      
              # Store in Redis (exact match)
              # Implementation: Store in Redis with TTL
      
              # Store in Qdrant (semantic similarity)
              embedding = self.embedding_model.encode(prompt).tolist()
      
              self.qdrant.upsert(
                  collection_name=self.collection_name,
                  points=[
                      {
                          "id": cache_key,
                          "vector": embedding,
                          "payload": {
                              "prompt": prompt,
                              "model": model,
                              "response": json.dumps(response.model_dump()),
                              "timestamp": datetime.utcnow().isoformat()
                          }
                      }
                  ]
              )
      
    • Files to create: orchestrator/llm/cached_client.py
  • Implement Model Selection Strategy (3 hours)

    • Route to cheapest model capable of solving task
    • Use complexity classifier to determine required model
    • Code example:
      # orchestrator/llm/model_selector.py
      from typing import Dict, Any, List
      import re
      
      class ModelSelector:
          """Select cheapest LLM model for a given task."""
      
          # Cost per 1M tokens (input/output)
          MODEL_COSTS = {
              "gpt-4-turbo-preview": (10.00, 30.00),
              "gpt-4": (30.00, 60.00),
              "gpt-3.5-turbo": (0.50, 1.50),
              "mistral-7b-instruct": (0.20, 0.20),  # Self-hosted
          }
      
          # Model capabilities
          MODEL_CAPABILITIES = {
              "gpt-4-turbo-preview": {"reasoning": 10, "coding": 9, "knowledge": 10},
              "gpt-4": {"reasoning": 10, "coding": 10, "knowledge": 10},
              "gpt-3.5-turbo": {"reasoning": 7, "coding": 7, "knowledge": 8},
              "mistral-7b-instruct": {"reasoning": 6, "coding": 6, "knowledge": 6},
          }
      
          def select_model(
              self,
              task_description: str,
              required_capability: str = "reasoning",
              min_capability_score: int = 7
          ) -> str:
              """Select cheapest model meeting requirements."""
      
              # Determine task complexity
              complexity = self._assess_complexity(task_description)
      
              # Filter models by capability
              suitable_models = [
                  model for model, capabilities in self.MODEL_CAPABILITIES.items()
                  if capabilities.get(required_capability, 0) >= min(complexity, min_capability_score)
              ]
      
              if not suitable_models:
                  # Fallback to most capable model
                  return "gpt-4-turbo-preview"
      
              # Select cheapest suitable model
              cheapest = min(
                  suitable_models,
                  key=lambda m: sum(self.MODEL_COSTS[m])
              )
      
              return cheapest
      
          def _assess_complexity(self, task_description: str) -> int:
              """Assess task complexity (1-10 scale)."""
      
              complexity_indicators = {
                  # High complexity
                  r"multi-step|complex|advanced|intricate": 9,
                  r"requires.*reasoning|logical.*deduction": 8,
                  r"analyze|evaluate|compare": 7,
      
                  # Medium complexity
                  r"explain|describe|summarize": 6,
                  r"translate|convert|transform": 5,
      
                  # Low complexity
                  r"list|enumerate|identify": 4,
                  r"yes|no|true|false": 3,
                  r"simple|basic|straightforward": 2,
              }
      
              max_complexity = 5  # Default medium complexity
              for pattern, score in complexity_indicators.items():
                  if re.search(pattern, task_description, re.IGNORECASE):
                      max_complexity = max(max_complexity, score)
      
              return max_complexity
      
    • Files to create: orchestrator/llm/model_selector.py
  • Fine-Tune Specialist Models (3 hours)

    • Collect training data from task logs
    • Fine-tune Mistral 7B for common patterns
    • Replace GPT-3.5 calls with fine-tuned model
    • Code example:
      # scripts/fine_tune_specialist.py
      from datasets import Dataset
      from transformers import (
          AutoModelForCausalLM,
          AutoTokenizer,
          TrainingArguments,
          Trainer
      )
      from typing import List, Dict, Any
      import json
      
      class SpecialistModelTrainer:
          """Fine-tune specialist models for common tasks."""
      
          def __init__(self, base_model: str = "mistralai/Mistral-7B-Instruct-v0.2"):
              self.base_model = base_model
              self.tokenizer = AutoTokenizer.from_pretrained(base_model)
              self.model = AutoModelForCausalLM.from_pretrained(
                  base_model,
                  load_in_4bit=True,  # QLoRA for efficient fine-tuning
                  device_map="auto"
              )
      
          def prepare_training_data(
              self,
              task_logs_path: str,
              task_type: str
          ) -> Dataset:
              """Prepare training data from task logs."""
      
              # Load task logs
              with open(task_logs_path) as f:
                  logs = [json.loads(line) for line in f]
      
              # Filter by task type
              relevant_logs = [
                  log for log in logs
                  if log.get("task_type") == task_type
              ]
      
              # Format for instruction tuning
              training_examples = []
              for log in relevant_logs:
                  training_examples.append({
                      "instruction": log["input_prompt"],
                      "output": log["llm_response"]
                  })
      
              return Dataset.from_list(training_examples)
      
          def fine_tune(
              self,
              dataset: Dataset,
              output_dir: str,
              num_epochs: int = 3
          ):
              """Fine-tune model on dataset."""
      
              training_args = TrainingArguments(
                  output_dir=output_dir,
                  num_train_epochs=num_epochs,
                  per_device_train_batch_size=4,
                  gradient_accumulation_steps=4,
                  learning_rate=2e-5,
                  warmup_steps=100,
                  logging_steps=10,
                  save_steps=100,
                  evaluation_strategy="steps",
                  eval_steps=100,
                  load_best_model_at_end=True
              )
      
              trainer = Trainer(
                  model=self.model,
                  args=training_args,
                  train_dataset=dataset,
                  tokenizer=self.tokenizer
              )
      
              trainer.train()
              trainer.save_model(output_dir)
      
      if __name__ == "__main__":
          trainer = SpecialistModelTrainer()
      
          # Fine-tune for code review task
          dataset = trainer.prepare_training_data(
              task_logs_path="logs/task_logs.jsonl",
              task_type="code_review"
          )
      
          trainer.fine_tune(
              dataset=dataset,
              output_dir="models/mistral-7b-code-review"
          )
      
    • Files to create: scripts/fine_tune_specialist.py

Request Optimization (4 hours)

  • Implement Request Batching (2 hours)

    • Batch similar requests to reduce API overhead
    • Use async processing with batch windows
    • Files to create: orchestrator/llm/batch_processor.py
  • Implement Request Deduplication (2 hours)

    • Detect duplicate requests in flight
    • Return cached result to duplicate requesters
    • Files to create: orchestrator/middleware/deduplication.py

Testing Requirements

Unit Tests

  • Resource analyzer calculations (10 test cases)
  • Model selector logic (15 test cases)
  • Prompt caching (20 test cases)
  • Request batching (10 test cases)

Integration Tests

  • End-to-end cost tracking
  • Spot instance failover
  • LLM cost reduction verification
  • Fine-tuned model accuracy vs base model

Performance Tests

  • Cost per task benchmark (before/after optimization)
  • Cache hit rate measurement (target >60%)
  • Fine-tuned model latency vs GPT-3.5

Documentation Deliverables

  • Cost optimization strategy guide
  • Right-sizing procedures
  • Spot instance configuration guide
  • LLM cost reduction techniques
  • Fine-tuning runbooks

Success Criteria

  • Cost per task reduced by 50% vs Phase 5
  • Resource waste reduced by >30%
  • LLM cache hit rate >60%
  • Fine-tuned models achieve >95% accuracy of GPT-3.5 on target tasks
  • Zero performance degradation from cost optimizations

Common Pitfalls

  1. Over-Optimization: Aggressive right-sizing causes OOM kills—maintain 20% buffer
  2. Spot Instance Unavailability: Spot capacity shortages in peak hours—keep on-demand fallback
  3. Cache Staleness: Cached responses become outdated—implement TTL and versioning
  4. Fine-Tuning Overfitting: Model only works on training distribution—use diverse dataset
  5. Premature Optimization: Optimize before understanding usage patterns—collect 30+ days data first

Estimated Effort

  • Development: 28 hours
  • Testing: 6 hours
  • Documentation: 3 hours
  • Total: 37 hours (~2 weeks for 3 engineers)

Dependencies

  • Prerequisites: Sprint 6.1 (autoscaling), Phase 3 (monitoring)
  • Blocking: None
  • Blocked By: None

Sprint 6.3: Compliance Implementation [Week 37-38]

(Abbreviated for space - full version would be 1,200-1,500 lines)

Sprint Goals

  • Achieve SOC 2 Type II compliance
  • Implement ISO 27001 controls
  • Ensure GDPR compliance (data protection, right to erasure)
  • Ensure CCPA compliance (opt-out, data disclosure)
  • HIPAA readiness (encryption, access controls, audit logs)
  • Pass external compliance audits

Key Tasks (Summary)

  1. SOC 2 Type II Preparation (12 hours)

    • Implement security controls (TSC)
    • Document policies and procedures
    • Conduct internal audit
    • Contract external auditor
  2. ISO 27001 Implementation (10 hours)

    • Risk assessment and treatment
    • Information security policies
    • Access control procedures
    • Incident management
  3. GDPR Compliance (8 hours)

    • Data protection impact assessment (DPIA)
    • Consent management
    • Right to erasure implementation
    • Data portability
  4. CCPA Compliance (6 hours)

    • Consumer rights implementation (opt-out, disclosure)
    • Privacy policy updates
    • Data inventory and mapping
  5. HIPAA Readiness (6 hours)

    • Encryption at rest and in transit
    • Access controls and audit logs
    • Business associate agreements (BAA)
    • Breach notification procedures

Estimated Effort: 42 hours (~2 weeks for 2 engineers)


Sprint 6.4: Advanced Performance [Week 39-40]

(Abbreviated for space - full version would be 1,200-1,500 lines)

Sprint Goals

  • Rewrite performance-critical components in Rust
  • Fine-tune LLM models for specific tasks
  • Implement advanced caching strategies (multi-tier, predictive)
  • Add speculative execution for anticipated tasks
  • Achieve P99 latency <10s (vs <30s in Phase 1)
  • Reduce LLM API costs by additional 30%

Key Tasks (Summary)

  1. Rust Performance Rewrites (16 hours)

    • Rewrite Planner Arm in Rust (2x faster)
    • Rewrite Judge Arm in Rust (3x faster)
    • Optimize Reflex Layer (target <5ms P95)
  2. Model Fine-Tuning (12 hours)

    • Fine-tune task decomposition model
    • Fine-tune code generation model
    • Fine-tune validation model
    • Deploy fine-tuned models
  3. Advanced Caching (10 hours)

    • Multi-tier caching (L1: Redis, L2: Qdrant, L3: S3)
    • Predictive cache warming
    • Cache invalidation strategies
  4. Speculative Execution (8 hours)

    • Predict next likely task based on patterns
    • Precompute results in background
    • Serve from cache when requested
  5. Performance Benchmarking (4 hours)

    • Comprehensive performance test suite
    • Compare Phase 6 vs Phase 1 metrics
    • Latency reduction verification

Estimated Effort: 50 hours (~2.5 weeks for 2 engineers)


Sprint 6.5: Multi-Tenancy [Week 41-42]

(Abbreviated for space - full version would be 1,200-1,500 lines)

Sprint Goals

  • Implement tenant isolation (network, storage, compute)
  • Add authentication and authorization per tenant
  • Implement usage-based billing
  • Create tenant management portal
  • Test multi-tenant security isolation
  • Document multi-tenancy architecture

Key Tasks (Summary)

  1. Tenant Isolation (12 hours)

    • Kubernetes namespaces per tenant
    • Network policies for isolation
    • Separate database schemas
    • Qdrant collections per tenant
  2. Authentication and Authorization (10 hours)

    • Multi-tenant Auth0 integration
    • Tenant-scoped API keys
    • Role-based access control (RBAC) per tenant
  3. Usage-Based Billing (10 hours)

    • Meter API calls, LLM tokens, compute time
    • Integrate with Stripe for billing
    • Generate invoices and usage reports
  4. Tenant Management Portal (8 hours)

    • React admin dashboard
    • Tenant provisioning and configuration
    • Usage analytics and billing
  5. Security Testing (6 hours)

    • Tenant isolation verification
    • Cross-tenant access attempts (should all fail)
    • Data leakage testing

Estimated Effort: 46 hours (~2.5 weeks for 2 engineers)


Phase 6 Summary

Total Tasks: 80+ production readiness tasks across 5 sprints Estimated Duration: 8-10 weeks with 4-5 engineers Total Estimated Hours: ~206 hours development + ~40 hours testing + ~25 hours documentation = 271 hours

Deliverables:

  • Autoscaling infrastructure (HPA, VPA, cluster autoscaler)
  • 50% cost reduction vs Phase 5
  • SOC 2 Type II, ISO 27001, GDPR, CCPA compliance
  • P99 latency <10s (67% improvement vs Phase 1)
  • Multi-tenant production platform

Completion Checklist:

  • Autoscaling handles 10x traffic spikes
  • Cost per task reduced by 50%
  • SOC 2 Type II audit passed
  • P99 latency <10s achieved
  • Multi-tenant isolation verified
  • Production SLA: 99.9% uptime, <15s P95 latency
  • Zero security incidents in first 90 days
  • Public API and documentation published

Next Steps: Production launch and customer onboarding


Document Version: 1.0 Last Updated: 2025-11-10 Maintained By: OctoLLM Production Team