Phase 6: Production Readiness
Status: Not Started Duration: 8-10 weeks Team Size: 4-5 engineers (1 SRE, 1 ML engineer, 1 Python, 1 Rust, 1 DevOps) Prerequisites: Phase 5 complete (security hardening) Start Date: TBD Target Completion: TBD
Overview
Phase 6 prepares OctoLLM for production deployment at scale with autoscaling, cost optimization, compliance implementation, advanced performance tuning, and multi-tenancy support.
Key Deliverables:
- Autoscaling - HorizontalPodAutoscaler with custom metrics, VPA, cluster autoscaling
- Cost Optimization - Right-sizing, spot instances, reserved capacity, LLM cost reduction
- Compliance - SOC 2 Type II, ISO 27001, GDPR, CCPA, HIPAA readiness
- Advanced Performance - Rust rewrites, model fine-tuning, advanced caching, speculative execution
- Multi-Tenancy - Tenant isolation, authentication, data isolation, usage-based billing
Success Criteria:
- ✅ Autoscaling handles 10x traffic spikes without degradation
- ✅ Cost per task reduced by 50% vs Phase 5
- ✅ SOC 2 Type II audit passed
- ✅ P99 latency <10s for critical tasks (vs <30s in Phase 1)
- ✅ Multi-tenant isolation tested and verified
- ✅ Production SLA: 99.9% uptime, <15s P95 latency
- ✅ Zero customer-impacting security incidents in first 90 days
Reference: docs/doc_phases/PHASE-6-COMPLETE-SPECIFICATIONS.md (14,000+ lines)
Sprint 6.1: Autoscaling [Week 33-34]
Duration: 2 weeks Team: 2 engineers (1 SRE, 1 DevOps) Prerequisites: Phase 3 complete (Kubernetes deployment) Priority: HIGH
Sprint Goals
- Implement HorizontalPodAutoscaler (HPA) for all services
- Configure VerticalPodAutoscaler (VPA) for right-sizing
- Set up cluster autoscaling for node pools
- Create custom metrics for LLM workload scaling
- Test autoscaling under load
- Document scaling policies and runbooks
Architecture Decisions
Scaling Strategy: Hybrid approach (HPA for replicas, VPA for resource requests, cluster autoscaler for nodes) Metrics: CPU, memory, custom (queue depth, task latency, LLM token rate) Target Utilization: 70% CPU/memory (allows headroom for spikes) Scale-Up Policy: Aggressive (30s stabilization) Scale-Down Policy: Conservative (5 minutes stabilization to prevent flapping) Min/Max Replicas: Service-dependent (orchestrator: 3-20, arms: 2-10)
Tasks
HorizontalPodAutoscaler Setup (10 hours)
-
Install Metrics Server (1 hour)
- Deploy metrics-server in kube-system namespace
- Verify metric collection
- Code example:
# Install metrics-server kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml # Verify metrics available kubectl top nodes kubectl top pods -n octollm - Files to create:
k8s/monitoring/metrics-server.yaml
-
Create HPA for Orchestrator (2 hours)
- Scale based on CPU and custom metrics (task queue depth)
- Aggressive scale-up, conservative scale-down
- Code example:
# k8s/autoscaling/orchestrator-hpa.yaml apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: orchestrator-hpa namespace: octollm spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: orchestrator minReplicas: 3 maxReplicas: 20 metrics: # CPU-based scaling - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 # Memory-based scaling - type: Resource resource: name: memory target: type: Utilization averageUtilization: 75 # Custom metric: task queue depth - type: Pods pods: metric: name: task_queue_depth target: type: AverageValue averageValue: "10" # Scale up if >10 tasks per pod behavior: scaleUp: stabilizationWindowSeconds: 30 policies: - type: Percent value: 100 # Double replicas periodSeconds: 30 - type: Pods value: 4 # Or add 4 pods periodSeconds: 30 selectPolicy: Max # Choose most aggressive scaleDown: stabilizationWindowSeconds: 300 # 5 minutes policies: - type: Percent value: 50 # Remove 50% of pods periodSeconds: 60 - type: Pods value: 2 # Or remove 2 pods periodSeconds: 60 selectPolicy: Min # Choose most conservative - Files to create:
k8s/autoscaling/orchestrator-hpa.yaml
-
Create HPAs for All Arms (4 hours)
- Planner Arm: Scale on CPU + task decomposition requests
- Executor Arm: Scale on CPU + active executions
- Coder Arm: Scale on CPU + code generation requests
- Judge Arm: Scale on CPU + validation requests
- Safety Guardian Arm: Scale on CPU + PII detection requests
- Retriever Arm: Scale on CPU + search requests
- Code example (Executor Arm):
# k8s/autoscaling/executor-arm-hpa.yaml apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: executor-arm-hpa namespace: octollm spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: executor-arm minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 - type: Pods pods: metric: name: active_executions target: type: AverageValue averageValue: "3" # Max 3 concurrent executions per pod behavior: scaleUp: stabilizationWindowSeconds: 30 policies: - type: Percent value: 100 periodSeconds: 30 scaleDown: stabilizationWindowSeconds: 300 policies: - type: Pods value: 1 periodSeconds: 60 - Files to create:
k8s/autoscaling/executor-arm-hpa.yaml, similar for other arms
-
Implement Custom Metrics Exporter (3 hours)
-
Expose application metrics for HPA (task queue depth, active executions)
-
Use Prometheus adapter
-
Code example:
# orchestrator/metrics/custom_metrics.py from prometheus_client import Gauge from typing import Dict, Any # Define custom metrics for autoscaling task_queue_depth_gauge = Gauge( 'task_queue_depth', 'Number of tasks waiting in queue per pod', ['pod_name'] ) active_tasks_gauge = Gauge( 'active_tasks', 'Number of tasks currently being processed', ['pod_name'] ) class CustomMetricsExporter: """Export custom metrics for HPA.""" def __init__(self, pod_name: str): self.pod_name = pod_name def update_queue_depth(self, depth: int): """Update task queue depth metric.""" task_queue_depth_gauge.labels(pod_name=self.pod_name).set(depth) def update_active_tasks(self, count: int): """Update active task count metric.""" active_tasks_gauge.labels(pod_name=self.pod_name).set(count)# k8s/monitoring/prometheus-adapter-config.yaml apiVersion: v1 kind: ConfigMap metadata: name: prometheus-adapter-config namespace: monitoring data: config.yaml: | rules: - seriesQuery: 'task_queue_depth{namespace="octollm"}' resources: overrides: namespace: {resource: "namespace"} pod_name: {resource: "pod"} name: matches: "^(.*)$" as: "task_queue_depth" metricsQuery: 'avg_over_time(task_queue_depth{<<.LabelMatchers>>}[1m])' - seriesQuery: 'active_executions{namespace="octollm"}' resources: overrides: namespace: {resource: "namespace"} pod_name: {resource: "pod"} name: matches: "^(.*)$" as: "active_executions" metricsQuery: 'avg_over_time(active_executions{<<.LabelMatchers>>}[1m])' -
Files to create:
orchestrator/metrics/custom_metrics.py,k8s/monitoring/prometheus-adapter-config.yaml
-
VerticalPodAutoscaler Setup (4 hours)
-
Install VPA (1 hour)
- Deploy VPA components (recommender, updater, admission controller)
- Code example:
# Install VPA git clone https://github.com/kubernetes/autoscaler.git cd autoscaler/vertical-pod-autoscaler ./hack/vpa-up.sh - Files to create:
k8s/autoscaling/vpa-install.sh
-
Create VPA Policies (2 hours)
- Recommendation-only mode for initial analysis
- Auto mode for non-critical services
- Code example:
# k8s/autoscaling/orchestrator-vpa.yaml apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: orchestrator-vpa namespace: octollm spec: targetRef: apiVersion: apps/v1 kind: Deployment name: orchestrator updatePolicy: updateMode: "Auto" # Auto, Recreate, Initial, or Off resourcePolicy: containerPolicies: - containerName: orchestrator minAllowed: cpu: 500m memory: 1Gi maxAllowed: cpu: 8000m memory: 16Gi controlledResources: - cpu - memory - Files to create:
k8s/autoscaling/orchestrator-vpa.yaml
-
Monitor VPA Recommendations (1 hour)
- Analyze recommendations for all services
- Adjust resource requests based on data
- Code example:
# scripts/analyze_vpa_recommendations.sh #!/bin/bash set -e echo "=== VPA Recommendations Analysis ===" for deployment in orchestrator planner-arm executor-arm coder-arm judge-arm safety-guardian-arm retriever-arm; do echo "\n--- $deployment ---" # Get VPA recommendations kubectl get vpa ${deployment}-vpa -n octollm -o json | \ jq -r '.status.recommendation.containerRecommendations[] | "Container: \(.containerName)\n Current CPU: \(.target.cpu)\n Recommended CPU: \(.upperBound.cpu)\n Current Memory: \(.target.memory)\n Recommended Memory: \(.upperBound.memory)"' done - Files to create:
scripts/analyze_vpa_recommendations.sh
Cluster Autoscaler Setup (4 hours)
-
Configure Cluster Autoscaler (2 hours)
- Set up node pools with min/max sizes
- Configure autoscaler for each cloud provider
- Code example (GKE):
# k8s/autoscaling/cluster-autoscaler-gke.yaml apiVersion: apps/v1 kind: Deployment metadata: name: cluster-autoscaler namespace: kube-system spec: replicas: 1 template: spec: serviceAccountName: cluster-autoscaler containers: - image: k8s.gcr.io/autoscaling/cluster-autoscaler:v1.28.0 name: cluster-autoscaler command: - ./cluster-autoscaler - --v=4 - --stderrthreshold=info - --cloud-provider=gce - --skip-nodes-with-local-storage=false - --expander=least-waste - --node-group-auto-discovery=mig:namePrefix=octollm-node-pool - --balance-similar-node-groups - --skip-nodes-with-system-pods=false - --scale-down-delay-after-add=5m - --scale-down-unneeded-time=5m --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: cluster-autoscaler rules: - apiGroups: [""] resources: ["events", "endpoints"] verbs: ["create", "patch"] - apiGroups: [""] resources: ["pods/eviction"] verbs: ["create"] - apiGroups: [""] resources: ["pods/status"] verbs: ["update"] - apiGroups: [""] resources: ["endpoints"] resourceNames: ["cluster-autoscaler"] verbs: ["get", "update"] - apiGroups: [""] resources: ["nodes"] verbs: ["watch", "list", "get", "update"] - apiGroups: [""] resources: ["pods", "services", "replicationcontrollers", "persistentvolumeclaims", "persistentvolumes"] verbs: ["watch", "list", "get"] - apiGroups: ["extensions"] resources: ["replicasets", "daemonsets"] verbs: ["watch", "list", "get"] - apiGroups: ["policy"] resources: ["poddisruptionbudgets"] verbs: ["watch", "list"] - apiGroups: ["apps"] resources: ["statefulsets", "replicasets", "daemonsets"] verbs: ["watch", "list", "get"] - apiGroups: ["storage.k8s.io"] resources: ["storageclasses", "csinodes", "csidrivers", "csistoragecapacities"] verbs: ["watch", "list", "get"] - apiGroups: ["batch", "extensions"] resources: ["jobs"] verbs: ["get", "list", "watch", "patch"] - apiGroups: ["coordination.k8s.io"] resources: ["leases"] verbs: ["create"] - apiGroups: ["coordination.k8s.io"] resourceNames: ["cluster-autoscaler"] resources: ["leases"] verbs: ["get", "update"] - Files to create:
k8s/autoscaling/cluster-autoscaler-gke.yaml
-
Create Node Pools with Labels (1 hour)
- Separate pools for CPU-intensive and memory-intensive workloads
- Use node affinity to schedule arms appropriately
- Code example:
# terraform/gke-node-pools.tf resource "google_container_node_pool" "cpu_optimized" { name = "cpu-optimized-pool" cluster = google_container_cluster.octollm.name node_count = 2 autoscaling { min_node_count = 2 max_node_count = 20 } node_config { machine_type = "n2-highcpu-16" # 16 vCPU, 16 GB RAM labels = { workload-type = "cpu-optimized" } taint { key = "workload-type" value = "cpu-optimized" effect = "NO_SCHEDULE" } } } resource "google_container_node_pool" "memory_optimized" { name = "memory-optimized-pool" cluster = google_container_cluster.octollm.name node_count = 2 autoscaling { min_node_count = 2 max_node_count = 10 } node_config { machine_type = "n2-highmem-8" # 8 vCPU, 64 GB RAM labels = { workload-type = "memory-optimized" } taint { key = "workload-type" value = "memory-optimized" effect = "NO_SCHEDULE" } } } - Files to create:
terraform/gke-node-pools.tf
-
Test Cluster Autoscaling (1 hour)
- Simulate load spike
- Verify nodes added automatically
- Verify nodes removed after scale-down
- Files to create:
scripts/test_cluster_autoscaling.sh
Load Testing (4 hours)
-
Create Load Test Suite (2 hours)
- Use k6 or Locust for load generation
- Simulate realistic traffic patterns
- Code example:
// tests/load/autoscaling_test.js import http from 'k6/http'; import { check, sleep } from 'k6'; import { Rate } from 'k6/metrics'; const failureRate = new Rate('failed_requests'); export let options = { stages: [ { duration: '2m', target: 10 }, // Ramp up to 10 users { duration: '5m', target: 10 }, // Steady state { duration: '2m', target: 50 }, // Spike to 50 users { duration: '5m', target: 50 }, // Hold spike { duration: '2m', target: 100 }, // Extreme spike { duration: '5m', target: 100 }, // Hold extreme spike { duration: '5m', target: 0 }, // Ramp down ], thresholds: { 'failed_requests': ['rate<0.01'], // <1% failure rate 'http_req_duration': ['p(95)<15000'], // P95 latency <15s }, }; const BASE_URL = 'http://octollm-gateway.octollm.svc.cluster.local'; export default function () { // Submit a task const payload = JSON.stringify({ goal: 'Analyze this code for security vulnerabilities', constraints: { max_cost_tokens: 10000, max_time_seconds: 300 }, context: { code: 'def login(username, password):\n query = f"SELECT * FROM users WHERE username=\'{username}\' AND password=\'{password}\'"' } }); const params = { headers: { 'Content-Type': 'application/json', 'Authorization': 'Bearer test-token-123' }, }; const response = http.post(`${BASE_URL}/tasks`, payload, params); check(response, { 'status is 201': (r) => r.status === 201, 'has task_id': (r) => r.json('task_id') !== undefined, }) || failureRate.add(1); sleep(1); } - Files to create:
tests/load/autoscaling_test.js
-
Run Load Tests (2 hours)
- Execute load tests against staging environment
- Monitor autoscaling behavior
- Verify SLA compliance (99.9% uptime, <15s P95 latency)
- Generate load test report
- Code example:
# scripts/run_load_test.sh #!/bin/bash set -e echo "Starting autoscaling load test..." # Run k6 load test k6 run --out json=load_test_results.json tests/load/autoscaling_test.js # Analyze results python scripts/analyze_load_test.py load_test_results.json # Check HPA events echo "\n=== HPA Events ===" kubectl get events -n octollm --field-selector involvedObject.kind=HorizontalPodAutoscaler # Check pod scaling timeline echo "\n=== Pod Count Timeline ===" kubectl get pods -n octollm -l app=orchestrator --watch echo "Load test complete. Review load_test_results.json for detailed metrics." - Files to create:
scripts/run_load_test.sh,scripts/analyze_load_test.py
Testing Requirements
Unit Tests
- HPA configuration validation (5 test cases)
- VPA policy validation (5 test cases)
- Custom metrics exporter (10 test cases)
Integration Tests
- HPA scaling behavior (scale up, scale down, flapping prevention)
- VPA resource adjustment
- Cluster autoscaler node provisioning
- End-to-end autoscaling under load
Performance Tests
- Load test: 10x traffic spike (verify autoscaling handles without degradation)
- Stress test: 100x traffic spike (verify graceful degradation)
- Soak test: 24-hour sustained load (verify no memory leaks or resource drift)
Documentation Deliverables
- Autoscaling architecture diagram
- HPA configuration guide
- VPA tuning guide
- Cluster autoscaler runbook
- Load testing procedures
- Troubleshooting guide (scaling issues)
Success Criteria
- HPA scales services within 60 seconds of load increase
- VPA recommendations reduce resource waste by >30%
- Cluster autoscaler provisions nodes within 5 minutes
- Load test passes with <1% failure rate and P95 latency <15s
- Cost per task unchanged despite autoscaling overhead
Common Pitfalls
- HPA Flapping: Too aggressive scale-down causes constant scaling up/down—use longer stabilization windows
- VPA Disruption: Auto mode restarts pods—use recommendation mode for critical services
- Node Affinity Conflicts: Pods can't schedule if no matching nodes—ensure default node pool
- Custom Metrics Lag: Prometheus scrape interval causes scaling delays—reduce to 15s for autoscaling metrics
- Resource Limits: HPA can't scale if pods hit resource limits—ensure limits > requests
Estimated Effort
- Development: 22 hours
- Testing: 6 hours
- Documentation: 3 hours
- Total: 31 hours (~2 weeks for 2 engineers)
Dependencies
- Prerequisites: Phase 3 complete (Kubernetes deployment, monitoring stack)
- Blocking: None
- Blocked By: None
Sprint 6.2: Cost Optimization [Week 35-36]
Duration: 2 weeks Team: 3 engineers (1 SRE, 1 ML engineer, 1 Python) Prerequisites: Sprint 6.1 complete (autoscaling) Priority: HIGH
Sprint Goals
- Right-size all services based on actual usage
- Implement spot/preemptible instances for non-critical workloads
- Purchase reserved capacity for baseline load
- Optimize LLM costs (prompt caching, smaller models, fine-tuning)
- Implement request batching and deduplication
- Reduce cost per task by 50% vs Phase 5
Architecture Decisions
Compute: Mix of on-demand (20%), spot instances (60%), reserved capacity (20%) LLM Strategy: Use cheapest model per task type (GPT-3.5 for simple, GPT-4 for complex) Caching: Aggressive prompt caching with semantic similarity matching Batching: Batch similar requests to reduce LLM API overhead Fine-Tuning: Fine-tune smaller models (Mistral 7B) to replace GPT-3.5 for common patterns
Tasks
Right-Sizing (8 hours)
-
Analyze Resource Usage (3 hours)
- Use VPA recommendations and Prometheus metrics
- Identify over-provisioned services
- Code example:
# scripts/analyze_resource_usage.py import requests from datetime import datetime, timedelta from typing import Dict, List, Any class ResourceAnalyzer: """Analyze resource usage and identify optimization opportunities.""" def __init__(self, prometheus_url: str): self.prometheus_url = prometheus_url def analyze_service( self, service_name: str, days_lookback: int = 30 ) -> Dict[str, Any]: """Analyze resource usage for a service.""" end_time = datetime.now() start_time = end_time - timedelta(days=days_lookback) # Query CPU usage cpu_query = f''' avg_over_time( rate(container_cpu_usage_seconds_total{{ namespace="octollm", pod=~"{service_name}-.*" }}[5m])[{days_lookback}d:5m] ) ''' cpu_usage = self._query_prometheus(cpu_query) # Query memory usage memory_query = f''' avg_over_time( container_memory_working_set_bytes{{ namespace="octollm", pod=~"{service_name}-.*" }}[{days_lookback}d:5m] ) ''' memory_usage = self._query_prometheus(memory_query) # Get current resource requests current_requests = self._get_current_requests(service_name) # Calculate waste cpu_waste_percent = ( (current_requests['cpu'] - cpu_usage['p95']) / current_requests['cpu'] * 100 ) memory_waste_percent = ( (current_requests['memory'] - memory_usage['p95']) / current_requests['memory'] * 100 ) return { 'service': service_name, 'current_cpu_request': current_requests['cpu'], 'p95_cpu_usage': cpu_usage['p95'], 'cpu_waste_percent': cpu_waste_percent, 'current_memory_request': current_requests['memory'], 'p95_memory_usage': memory_usage['p95'], 'memory_waste_percent': memory_waste_percent, 'recommendation': self._generate_recommendation( current_requests, cpu_usage, memory_usage ) } def _query_prometheus(self, query: str) -> Dict[str, float]: """Query Prometheus and return percentile statistics.""" # Implementation: Call Prometheus API, calculate percentiles pass def _get_current_requests(self, service_name: str) -> Dict[str, float]: """Get current resource requests from Kubernetes.""" # Implementation: Call Kubernetes API pass def _generate_recommendation( self, current: Dict[str, float], cpu_usage: Dict[str, float], memory_usage: Dict[str, float] ) -> str: """Generate right-sizing recommendation.""" # Add 20% buffer to P95 usage for headroom recommended_cpu = cpu_usage['p95'] * 1.2 recommended_memory = memory_usage['p95'] * 1.2 if recommended_cpu < current['cpu'] * 0.8: return f"Reduce CPU request to {recommended_cpu:.2f} cores" elif recommended_cpu > current['cpu'] * 1.2: return f"Increase CPU request to {recommended_cpu:.2f} cores" if recommended_memory < current['memory'] * 0.8: return f"Reduce memory request to {recommended_memory / 1e9:.2f} GB" elif recommended_memory > current['memory'] * 1.2: return f"Increase memory request to {recommended_memory / 1e9:.2f} GB" return "Current sizing is appropriate" - Files to create:
scripts/analyze_resource_usage.py
-
Apply Right-Sizing (2 hours)
- Update resource requests/limits for all services
- Deploy changes incrementally
- Monitor for performance regressions
- Files to update: All deployment YAML files
-
Calculate Cost Savings (1 hour)
- Compare costs before/after right-sizing
- Generate cost savings report
- Files to create:
docs/cost-optimization/right-sizing-report.md
-
Set Up Cost Monitoring Dashboard (2 hours)
- Grafana dashboard for cost tracking
- Alert on cost anomalies
- Code example:
{ "dashboard": { "title": "OctoLLM Cost Monitoring", "panels": [ { "title": "Total Monthly Cost", "type": "graph", "targets": [ { "expr": "sum(kube_pod_container_resource_requests{namespace='octollm'} * on(node) group_left() node_cost_hourly) * 730" } ] }, { "title": "Cost by Service", "type": "piechart", "targets": [ { "expr": "sum by (pod) (kube_pod_container_resource_requests{namespace='octollm'} * on(node) group_left() node_cost_hourly) * 730" } ] }, { "title": "LLM API Costs", "type": "graph", "targets": [ { "expr": "sum(llm_cost_usd_total)" } ] } ] } } - Files to create:
k8s/monitoring/grafana-dashboards/cost-monitoring.json
Spot Instances (6 hours)
-
Create Spot Instance Node Pool (2 hours)
- Configure with appropriate labels and taints
- Set up fallback to on-demand if spot unavailable
- Code example:
# terraform/gke-spot-node-pool.tf resource "google_container_node_pool" "spot_pool" { name = "spot-pool" cluster = google_container_cluster.octollm.name node_count = 5 autoscaling { min_node_count = 3 max_node_count = 50 } node_config { machine_type = "n2-standard-8" spot = true # Preemptible/spot instance labels = { workload-type = "spot" } taint { key = "workload-type" value = "spot" effect = "NO_SCHEDULE" } metadata = { disable-legacy-endpoints = "true" } } } - Files to create:
terraform/gke-spot-node-pool.tf
-
Configure Services for Spot Tolerance (3 hours)
- Add node affinity to prefer spot instances
- Implement graceful shutdown for preemption
- Add PodDisruptionBudgets to ensure availability
- Code example:
# k8s/arms/executor-deployment.yaml (updated for spot) apiVersion: apps/v1 kind: Deployment metadata: name: executor-arm namespace: octollm spec: replicas: 5 template: spec: # Prefer spot instances, fallback to on-demand affinity: nodeAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 preference: matchExpressions: - key: workload-type operator: In values: - spot tolerations: - key: workload-type operator: Equal value: spot effect: NoSchedule # Graceful shutdown for preemption terminationGracePeriodSeconds: 60 containers: - name: executor-arm lifecycle: preStop: exec: command: ["/bin/sh", "-c", "sleep 30"] # Drain connections --- apiVersion: policy/v1 kind: PodDisruptionBudget metadata: name: executor-arm-pdb namespace: octollm spec: minAvailable: 2 # Ensure at least 2 replicas always available selector: matchLabels: app: executor-arm - Files to update: All arm deployment YAML files
-
Test Spot Instance Preemption (1 hour)
- Simulate preemption events
- Verify graceful failover
- Files to create:
scripts/test_spot_preemption.sh
LLM Cost Optimization (10 hours)
-
Implement Prompt Caching (4 hours)
- Cache LLM responses with semantic similarity matching
- Use vector embeddings to find similar prompts
- Code example:
# orchestrator/llm/cached_client.py from openai import AsyncOpenAI from qdrant_client import QdrantClient from sentence_transformers import SentenceTransformer from typing import Dict, Any, Optional, List import hashlib import json class CachedLLMClient: """LLM client with semantic caching.""" def __init__( self, openai_client: AsyncOpenAI, qdrant_client: QdrantClient, embedding_model: SentenceTransformer, similarity_threshold: float = 0.95, collection_name: str = "llm_cache" ): self.openai = openai_client self.qdrant = qdrant_client self.embedding_model = embedding_model self.similarity_threshold = similarity_threshold self.collection_name = collection_name # Create collection if not exists self._init_collection() def _init_collection(self): """Initialize Qdrant collection for cache.""" from qdrant_client.models import Distance, VectorParams try: self.qdrant.create_collection( collection_name=self.collection_name, vectors_config=VectorParams( size=384, # all-MiniLM-L6-v2 embedding size distance=Distance.COSINE ) ) except Exception: pass # Collection already exists async def chat_completion( self, messages: List[Dict[str, str]], model: str = "gpt-4-turbo-preview", temperature: float = 0.0, **kwargs ) -> Dict[str, Any]: """Create chat completion with semantic caching.""" # Create cache key from messages prompt = self._messages_to_text(messages) cache_key = self._create_cache_key(prompt, model, temperature) # Check exact match cache first (fast) exact_match = await self._check_exact_cache(cache_key) if exact_match: return exact_match # Check semantic similarity cache (slower) if temperature == 0.0: # Only use semantic cache for deterministic requests semantic_match = await self._check_semantic_cache(prompt, model) if semantic_match: return semantic_match # Cache miss - call LLM response = await self.openai.chat.completions.create( messages=messages, model=model, temperature=temperature, **kwargs ) # Store in cache await self._store_in_cache(cache_key, prompt, model, response) return response.model_dump() def _messages_to_text(self, messages: List[Dict[str, str]]) -> str: """Convert messages to single text for embedding.""" return "\n".join(f"{m['role']}: {m['content']}" for m in messages) def _create_cache_key( self, prompt: str, model: str, temperature: float ) -> str: """Create deterministic cache key.""" key_input = f"{prompt}|{model}|{temperature}" return hashlib.sha256(key_input.encode()).hexdigest() async def _check_exact_cache(self, cache_key: str) -> Optional[Dict[str, Any]]: """Check Redis for exact cache hit.""" # Implementation: Query Redis pass async def _check_semantic_cache( self, prompt: str, model: str ) -> Optional[Dict[str, Any]]: """Check Qdrant for semantically similar cached responses.""" # Generate embedding embedding = self.embedding_model.encode(prompt).tolist() # Search for similar prompts results = self.qdrant.search( collection_name=self.collection_name, query_vector=embedding, limit=1, score_threshold=self.similarity_threshold, query_filter={ "must": [ {"key": "model", "match": {"value": model}} ] } ) if results and results[0].score >= self.similarity_threshold: # Cache hit cached_response = results[0].payload["response"] return json.loads(cached_response) return None async def _store_in_cache( self, cache_key: str, prompt: str, model: str, response: Any ): """Store response in both exact and semantic caches.""" # Store in Redis (exact match) # Implementation: Store in Redis with TTL # Store in Qdrant (semantic similarity) embedding = self.embedding_model.encode(prompt).tolist() self.qdrant.upsert( collection_name=self.collection_name, points=[ { "id": cache_key, "vector": embedding, "payload": { "prompt": prompt, "model": model, "response": json.dumps(response.model_dump()), "timestamp": datetime.utcnow().isoformat() } } ] ) - Files to create:
orchestrator/llm/cached_client.py
-
Implement Model Selection Strategy (3 hours)
- Route to cheapest model capable of solving task
- Use complexity classifier to determine required model
- Code example:
# orchestrator/llm/model_selector.py from typing import Dict, Any, List import re class ModelSelector: """Select cheapest LLM model for a given task.""" # Cost per 1M tokens (input/output) MODEL_COSTS = { "gpt-4-turbo-preview": (10.00, 30.00), "gpt-4": (30.00, 60.00), "gpt-3.5-turbo": (0.50, 1.50), "mistral-7b-instruct": (0.20, 0.20), # Self-hosted } # Model capabilities MODEL_CAPABILITIES = { "gpt-4-turbo-preview": {"reasoning": 10, "coding": 9, "knowledge": 10}, "gpt-4": {"reasoning": 10, "coding": 10, "knowledge": 10}, "gpt-3.5-turbo": {"reasoning": 7, "coding": 7, "knowledge": 8}, "mistral-7b-instruct": {"reasoning": 6, "coding": 6, "knowledge": 6}, } def select_model( self, task_description: str, required_capability: str = "reasoning", min_capability_score: int = 7 ) -> str: """Select cheapest model meeting requirements.""" # Determine task complexity complexity = self._assess_complexity(task_description) # Filter models by capability suitable_models = [ model for model, capabilities in self.MODEL_CAPABILITIES.items() if capabilities.get(required_capability, 0) >= min(complexity, min_capability_score) ] if not suitable_models: # Fallback to most capable model return "gpt-4-turbo-preview" # Select cheapest suitable model cheapest = min( suitable_models, key=lambda m: sum(self.MODEL_COSTS[m]) ) return cheapest def _assess_complexity(self, task_description: str) -> int: """Assess task complexity (1-10 scale).""" complexity_indicators = { # High complexity r"multi-step|complex|advanced|intricate": 9, r"requires.*reasoning|logical.*deduction": 8, r"analyze|evaluate|compare": 7, # Medium complexity r"explain|describe|summarize": 6, r"translate|convert|transform": 5, # Low complexity r"list|enumerate|identify": 4, r"yes|no|true|false": 3, r"simple|basic|straightforward": 2, } max_complexity = 5 # Default medium complexity for pattern, score in complexity_indicators.items(): if re.search(pattern, task_description, re.IGNORECASE): max_complexity = max(max_complexity, score) return max_complexity - Files to create:
orchestrator/llm/model_selector.py
-
Fine-Tune Specialist Models (3 hours)
- Collect training data from task logs
- Fine-tune Mistral 7B for common patterns
- Replace GPT-3.5 calls with fine-tuned model
- Code example:
# scripts/fine_tune_specialist.py from datasets import Dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer ) from typing import List, Dict, Any import json class SpecialistModelTrainer: """Fine-tune specialist models for common tasks.""" def __init__(self, base_model: str = "mistralai/Mistral-7B-Instruct-v0.2"): self.base_model = base_model self.tokenizer = AutoTokenizer.from_pretrained(base_model) self.model = AutoModelForCausalLM.from_pretrained( base_model, load_in_4bit=True, # QLoRA for efficient fine-tuning device_map="auto" ) def prepare_training_data( self, task_logs_path: str, task_type: str ) -> Dataset: """Prepare training data from task logs.""" # Load task logs with open(task_logs_path) as f: logs = [json.loads(line) for line in f] # Filter by task type relevant_logs = [ log for log in logs if log.get("task_type") == task_type ] # Format for instruction tuning training_examples = [] for log in relevant_logs: training_examples.append({ "instruction": log["input_prompt"], "output": log["llm_response"] }) return Dataset.from_list(training_examples) def fine_tune( self, dataset: Dataset, output_dir: str, num_epochs: int = 3 ): """Fine-tune model on dataset.""" training_args = TrainingArguments( output_dir=output_dir, num_train_epochs=num_epochs, per_device_train_batch_size=4, gradient_accumulation_steps=4, learning_rate=2e-5, warmup_steps=100, logging_steps=10, save_steps=100, evaluation_strategy="steps", eval_steps=100, load_best_model_at_end=True ) trainer = Trainer( model=self.model, args=training_args, train_dataset=dataset, tokenizer=self.tokenizer ) trainer.train() trainer.save_model(output_dir) if __name__ == "__main__": trainer = SpecialistModelTrainer() # Fine-tune for code review task dataset = trainer.prepare_training_data( task_logs_path="logs/task_logs.jsonl", task_type="code_review" ) trainer.fine_tune( dataset=dataset, output_dir="models/mistral-7b-code-review" ) - Files to create:
scripts/fine_tune_specialist.py
Request Optimization (4 hours)
-
Implement Request Batching (2 hours)
- Batch similar requests to reduce API overhead
- Use async processing with batch windows
- Files to create:
orchestrator/llm/batch_processor.py
-
Implement Request Deduplication (2 hours)
- Detect duplicate requests in flight
- Return cached result to duplicate requesters
- Files to create:
orchestrator/middleware/deduplication.py
Testing Requirements
Unit Tests
- Resource analyzer calculations (10 test cases)
- Model selector logic (15 test cases)
- Prompt caching (20 test cases)
- Request batching (10 test cases)
Integration Tests
- End-to-end cost tracking
- Spot instance failover
- LLM cost reduction verification
- Fine-tuned model accuracy vs base model
Performance Tests
- Cost per task benchmark (before/after optimization)
- Cache hit rate measurement (target >60%)
- Fine-tuned model latency vs GPT-3.5
Documentation Deliverables
- Cost optimization strategy guide
- Right-sizing procedures
- Spot instance configuration guide
- LLM cost reduction techniques
- Fine-tuning runbooks
Success Criteria
- Cost per task reduced by 50% vs Phase 5
- Resource waste reduced by >30%
- LLM cache hit rate >60%
- Fine-tuned models achieve >95% accuracy of GPT-3.5 on target tasks
- Zero performance degradation from cost optimizations
Common Pitfalls
- Over-Optimization: Aggressive right-sizing causes OOM kills—maintain 20% buffer
- Spot Instance Unavailability: Spot capacity shortages in peak hours—keep on-demand fallback
- Cache Staleness: Cached responses become outdated—implement TTL and versioning
- Fine-Tuning Overfitting: Model only works on training distribution—use diverse dataset
- Premature Optimization: Optimize before understanding usage patterns—collect 30+ days data first
Estimated Effort
- Development: 28 hours
- Testing: 6 hours
- Documentation: 3 hours
- Total: 37 hours (~2 weeks for 3 engineers)
Dependencies
- Prerequisites: Sprint 6.1 (autoscaling), Phase 3 (monitoring)
- Blocking: None
- Blocked By: None
Sprint 6.3: Compliance Implementation [Week 37-38]
(Abbreviated for space - full version would be 1,200-1,500 lines)
Sprint Goals
- Achieve SOC 2 Type II compliance
- Implement ISO 27001 controls
- Ensure GDPR compliance (data protection, right to erasure)
- Ensure CCPA compliance (opt-out, data disclosure)
- HIPAA readiness (encryption, access controls, audit logs)
- Pass external compliance audits
Key Tasks (Summary)
-
SOC 2 Type II Preparation (12 hours)
- Implement security controls (TSC)
- Document policies and procedures
- Conduct internal audit
- Contract external auditor
-
ISO 27001 Implementation (10 hours)
- Risk assessment and treatment
- Information security policies
- Access control procedures
- Incident management
-
GDPR Compliance (8 hours)
- Data protection impact assessment (DPIA)
- Consent management
- Right to erasure implementation
- Data portability
-
CCPA Compliance (6 hours)
- Consumer rights implementation (opt-out, disclosure)
- Privacy policy updates
- Data inventory and mapping
-
HIPAA Readiness (6 hours)
- Encryption at rest and in transit
- Access controls and audit logs
- Business associate agreements (BAA)
- Breach notification procedures
Estimated Effort: 42 hours (~2 weeks for 2 engineers)
Sprint 6.4: Advanced Performance [Week 39-40]
(Abbreviated for space - full version would be 1,200-1,500 lines)
Sprint Goals
- Rewrite performance-critical components in Rust
- Fine-tune LLM models for specific tasks
- Implement advanced caching strategies (multi-tier, predictive)
- Add speculative execution for anticipated tasks
- Achieve P99 latency <10s (vs <30s in Phase 1)
- Reduce LLM API costs by additional 30%
Key Tasks (Summary)
-
Rust Performance Rewrites (16 hours)
- Rewrite Planner Arm in Rust (2x faster)
- Rewrite Judge Arm in Rust (3x faster)
- Optimize Reflex Layer (target <5ms P95)
-
Model Fine-Tuning (12 hours)
- Fine-tune task decomposition model
- Fine-tune code generation model
- Fine-tune validation model
- Deploy fine-tuned models
-
Advanced Caching (10 hours)
- Multi-tier caching (L1: Redis, L2: Qdrant, L3: S3)
- Predictive cache warming
- Cache invalidation strategies
-
Speculative Execution (8 hours)
- Predict next likely task based on patterns
- Precompute results in background
- Serve from cache when requested
-
Performance Benchmarking (4 hours)
- Comprehensive performance test suite
- Compare Phase 6 vs Phase 1 metrics
- Latency reduction verification
Estimated Effort: 50 hours (~2.5 weeks for 2 engineers)
Sprint 6.5: Multi-Tenancy [Week 41-42]
(Abbreviated for space - full version would be 1,200-1,500 lines)
Sprint Goals
- Implement tenant isolation (network, storage, compute)
- Add authentication and authorization per tenant
- Implement usage-based billing
- Create tenant management portal
- Test multi-tenant security isolation
- Document multi-tenancy architecture
Key Tasks (Summary)
-
Tenant Isolation (12 hours)
- Kubernetes namespaces per tenant
- Network policies for isolation
- Separate database schemas
- Qdrant collections per tenant
-
Authentication and Authorization (10 hours)
- Multi-tenant Auth0 integration
- Tenant-scoped API keys
- Role-based access control (RBAC) per tenant
-
Usage-Based Billing (10 hours)
- Meter API calls, LLM tokens, compute time
- Integrate with Stripe for billing
- Generate invoices and usage reports
-
Tenant Management Portal (8 hours)
- React admin dashboard
- Tenant provisioning and configuration
- Usage analytics and billing
-
Security Testing (6 hours)
- Tenant isolation verification
- Cross-tenant access attempts (should all fail)
- Data leakage testing
Estimated Effort: 46 hours (~2.5 weeks for 2 engineers)
Phase 6 Summary
Total Tasks: 80+ production readiness tasks across 5 sprints Estimated Duration: 8-10 weeks with 4-5 engineers Total Estimated Hours: ~206 hours development + ~40 hours testing + ~25 hours documentation = 271 hours
Deliverables:
- Autoscaling infrastructure (HPA, VPA, cluster autoscaler)
- 50% cost reduction vs Phase 5
- SOC 2 Type II, ISO 27001, GDPR, CCPA compliance
- P99 latency <10s (67% improvement vs Phase 1)
- Multi-tenant production platform
Completion Checklist:
- Autoscaling handles 10x traffic spikes
- Cost per task reduced by 50%
- SOC 2 Type II audit passed
- P99 latency <10s achieved
- Multi-tenant isolation verified
- Production SLA: 99.9% uptime, <15s P95 latency
- Zero security incidents in first 90 days
- Public API and documentation published
Next Steps: Production launch and customer onboarding
Document Version: 1.0 Last Updated: 2025-11-10 Maintained By: OctoLLM Production Team